
1

Internet Draft Scott Shenker

Expires: April 1994 Xerox PARC

File: draft-shenker-realtime-model-00.ps David D. Clark

MIT

Lixia Zhang

Xerox PARC

October 1993

A Service Model for an Integrated Services Internet

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the

Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note that

other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months. Internet-

Drafts may be updated, replaced, or obsoleted by other documents at any time. It is

not appropriate to use Internet-Drafts as reference material or to cite them other than

as a \working draft" or \work in progress."

Abstract

The Internet is currently being confronted with service demands from a new generation

of applications. Supporting these applications e�ectively and e�ciently will require ex-

tending the current Internet \best-e�ort" service model to one that o�ers an integrated

suite of services. The purpose of this memo (which is derived primarily from [34]) is

to describe a proposed \core" service model for an integrated services Internet. In the

Appendix we discuss the process by which such a service model could be standardized

by the IETF.

1 Introduction

The current Internet o�ers a very simple service model: all packets receive the same \best e�ort"

service. The term \best e�ort" means that the network tries to forward packets as soon as possible,

but makes no quantitative commitments about the quality of service delivered. This service model

can be realized by using a single FIFO queue to do packet scheduling in the switches; in fact, this

service model arose precisely because FIFO packet scheduling, without admission control, cannot

e�ciently deliver any other service model. This single class \best e�ort" service model provides the

same quality of service to all ows

1

; this uniform quality of service is good, as measured by delay

and dropped packets, when the network is lightly loaded but can be quite poor when the network

is heavily utilized. Consequently, only those applications that are rather tolerant of this variable

1

Flow is the term we use to refer to end-to-end connections and other more general varieties of tra�c streams.

We will return to this issue in Section 3.3 where we discuss multicast ows more explicitly.



Expires: April 1994 2

service, such as �le transfer (e.g., FTP), electronic mail, and interactive terminals (e.g., Telnet)

have become widely adopted in the Internet.

However, we expect there to soon be widespread demand for an emerging generation of computer

based applications, such as FAX, remote video, multimedia conferencing, data fusion, remote X-

terminals, visualization, and virtual reality. These applications represent a wide variety of quality

of service requirements, ranging from the asynchronous nature of FAX and electronic mail to the

extremely time-sensitive nature of high quality audio, and from the low bandwidth requirements of

Telnet to the bandwidth intensive requirements of HDTV. To meet all of these service requirements

using the current Internet service model, it would be necessary (but perhaps not su�cient) to keep

the utilization level extremely low. We think a better solution is to o�er a more sophisticated service

model, so that applications can specify their service needs and the network can then allocate its

resources selectively towards those applications that are more performance sensitive. It is important

to emphasize that this solution requires that applications explicitly specify their service desires;

these needs are not derived implicitly by the network through the inspection of port numbers.

The service model is the enduring, and therefore the most fundamental, part of a network archi-

tecture. The service model will be incorporated into the network service interface used by future

applications; as such, it will de�ne the set of services they can request, and will therefore inuence

the design of future applications as well as the performance of existing ones. Thus, the service

model should not be designed in reference to any speci�c network artifact but rather should be

based on fundamental service requirements. While both the underlying network technology and

the overlying suite of applications will evolve, the need for compatibility requires that this service

interface remain relatively stable. Actually, compatibility only demands that the existing parts

of the service model must remain largely unchanged; the service model should be extensible with

augmentations handled without di�culty. Also, we should note that these compatibility arguments

apply only to those aspects of the service model which are part of the network service interface;

the service model will also have some components (e.g., the link-sharing services as de�ned in Sec-

tion 4) which are exercised through a network management interface, and here the compatibility

arguments do not apply with nearly the same force.

This memo proposes a core service model for the Internet. We address those services which relate

most directly to the time-of-delivery of packets. We do not address those services which are con-

cerned with which network links are used (which is the domain of routing) and those services which

involve encryption, security, authentication, or transmission reliability. We also do not consider ser-

vices, such as reliable multicast, which do tangentially involve the time-of-delivery but which more

fundamentally involve other factors such as bu�er management and inter-switch acknowledgment

algorithms. Furthermore, we do not consider time-of-delivery services which can best be delivered

at the end host or by gateway switches at the edge of the network, such as synchronization of

di�erent tra�c streams. Although many of the services listed above may perhaps be o�ered in the

future, we do not expect that they will a�ect the basic core of the service model which we discuss

here.

In order to e�ciently support this more sophisticated service model, Internet routers must employ

an appropriately sophisticated non-FIFO packet scheduling algorithm. In fact, the packet schedul-

ing algorithm is the most fundamental way in which the network can allocate resources selectively;

the network can also allocate selectively via routing or bu�er management algorithms, but neither



Expires: April 1994 3

of these by themselves can support a su�ciently general service model (see [3, 10, 12, 14, 15, 23, 26,

28, 29, 35] for a few examples of packet scheduling algorithms). However, packet scheduling algo-

rithms are only part of a complete mechanism to support explicit qualities of service. In particular,

since resources are �nite, one cannot always support an unbounded number of service requests. The

network must employ some form of admission algorithm so that it has control over which service

commitments are made. The admission process requires that ows characterize their tra�c stream

to the network when requesting service, and the network then determines whether or not to grant

the service request. It is important to keep in mind that admission control plays a crucial role in

allowing these scheduling algorithms to be e�ective by keeping the aggregate tra�c load down to

a level where meeting the service commitments is feasible (see [12, 17, 21, 25] for a few examples

of admission control algorithms). In fact, admission control is but one kind of denial of service;

we will discuss the several varieties of denial of service and their role in allowing the scheduling

algorithm to meet service commitments.

This memo has 6 sections. In Section 2 we identify the two kinds of service commitments we expect

future networks to make; these are quality of service commitments to individual ows and resource-

sharing commitments to collective entities. In Section 3 we explore the service requirements of

individual ows and then propose a corresponding set of service models. In Section 4 we discuss

the service requirements for resource-sharing commitments to collective entities, and propose a

related service model. In Section 5, we review the various forms denial of service can manifest,

and the ways in which denial of service can be used to augment the core service model. We then

conclude in Section 6 by discussing other viewpoints. In an Appendix we discuss how the Internet

community can standardize a new service model.

2 Service Commitments

A service model is made up of service commitments; that is, a service model describes what service

the network commits to deliver in response to a particular service request. In this section, we

describe the various di�erent kinds of service commitments that are included in our core service

model.

Service commitments can be divided up into two classes, depending on the way in which the

service is characterized. One class of service commitment is a quantitative or absolute service

commitment, which is some form of assurance that the network service will meet or exceed the

agreed upon quantitative speci�cations; a typical example of this is a bound on maximal packet

delay. The other class of service commitment is a qualitative or relative service commitment, which

is merely some form of assurance about how one set of packets will be treated relative to other sets

of packets. One example of this kind of relative service commitment is to o�er several di�erent

priority classes; the service in any priority class is not quantitatively characterized, but there is a

relative commitment to serve tra�c in a given priority class before tra�c in lower priority classes.

Thus, when we say that the current Internet o�ers only a single \best-e�ort" class of service, this is

equivalent to saying that it does not o�er any quantitative service commitments, and only o�ers the

most trivial relative service commitment to treat all packets equivalently. An important distinction

between these two classes of commitments is that quantitative service commitments often inherently

require some form of admission control, with the ow characterizing its tra�c in some manner; in



Expires: April 1994 4

contrast, relative service commitments generally do not require any admission control.

Service commitments can also be divided into two categories depending on the entities to which the

commitments are made. The �rst category of service commitments is the one most often considered

in the current literature; these are quality of service commitments to individual ows. In this case

the network provides some form of assurance that the quality of service delivered to the contracting

ow will meet or exceed the agreed upon speci�cations. The need for these kinds of service com-

mitments is usually driven by the ergonomic requirements of individual applications. For instance,

the perceived quality of many interactive audio and video applications declines dramatically when

the delay of incoming packets becomes too large; thus, these applications would perform better if

the network would commit to a small bound on the maximum packet queueing delay. In Section 3

we discuss what quality of service commitments are included in our core service model.

In contrast, the second category of service commitment we consider has rarely been explicitly

discussed in the research literature, even though there is widespread agreement in the industry

that there is great customer demand for this feature; these are resource-sharing commitments to

collective entities. In this case, the network provides an assurance that the resource in question will

be shared according to some prearranged convention among some set of collective entities. These

collective entities could, for example, be institutions, protocol families, or application types. An

example of the need for such resource-sharing commitments is when two private companies choose

to jointly purchase a �ber optic link and then elect to share the bandwidth in proportion to the

capital investments of the two companies. In Section 4, we present a more detailed motivation

for this form of service commitment and then discuss the particular resource-sharing commitments

that are part of our core service model.

We should reiterate that because the quality of service service commitments to individual ows

will typically be invoked through the service interface, compatibility requires that their de�nition

remain relatively stable. The resource sharing commitments will typically be invoked through a

network management interface, not through the service interface used by applications, and therefore

the need for compatibility does not require such a stable service de�nition.

3 Quality of Service Requirements and Service Models

In the previous section, we distinguished two sorts of service requirements, quality of service re-

quirements and resource sharing requirements. In this section we consider quality of service re-

quirements. We �rst argue that packet delay is the key measure of quality of service. We then

present our assumptions about the nature of future computer-based applications and their service

requirements. Finally, we describe a set of quality of service commitments designed to meet these

service requirements.

3.1 The Centrality of Delay

There is one measure of service that is relevant to almost all applications: per-packet delay. In some

sense, delay is the fundamental measure of the service given to a packet, since it describes when



Expires: April 1994 5

(and if) a packet is delivered and, if we assume that data is never corrupted (which we think is a

good approximation for the future Internet

2

), the time of delivery is the only quantity of interest

to applications. Delay is clearly the most central quality of service, and we will therefore start by

assuming that the only qualities of service about which the network makes commitments relate to

per-packet delay. Later, in Section 3.3 we will return to this point and ask if the service model that

results from this initial assumption is su�ciently general.

In addition to restricting our attention to delay, we make the even more restrictive assumption

that the only quantity about which we make quantitative service commitments are bounds on the

maximum and minimum delays. Thus, we have excluded quantitative service commitments about

other delay related qualities of service, such as targets for average delay. This is based on three

judgments. First, controlling nonextremal values of delay through packet scheduling algorithms

is usually impractical because it requires detailed knowledge of the actual load, rather than just

knowledge of the best and worst case loads. Second, even if one could control nonextremal measures

of packet delay for the aggregate tra�c in the network, this does not control the value of such

measures for individual ows; e.g., the average delay observed by a particular ow need not be

the same as, or even bounded by, the average of the aggregate (see [27] for a discussion of related

issues). Thus, controlling nonextremal measures of delay for the aggregate is not su�cient, and

we judge it impractical to control nonextremal measures of delay for each individual ow. Third,

as will be argued in the next section, applications that require quantitative delay bounds are more

sensitive to the extremes of delay than the averages or other statistical measures, so even if other

delay related qualities of service were practical they would not be particularly useful. We discuss

this in the section below when we discuss real-time applications.

Why have we not included bandwidth as a quality of service about which the network makes

commitments? This is primarily because, for applications which care about the time-of-delivery

of each packet, the description of per-packet delay is su�cient. The application determines its

bandwidth needs, and these needs are part of the tra�c characterization passed to the network's

admission control algorithm; it is the application which then has to make a commitment about the

bandwidth of its tra�c (when requesting a quantitative service commitment from the network),

and the network in turn makes a commitment about delay. However, there are some applications

which are essentially indi�erent to the time-of-delivery of individual packets; for example, when

transferring a very long �le the only relevant measure of performance is the �nish time of the

transfer, which is almost exclusively a function of the bandwidth. We discuss such applications at

the end of Section 3.3.

3.2 Application Delay Requirements

The degree to which application performance depends on low delay service varies widely, and we can

make several qualitative distinctions between applications based on the degree of their dependence.

One class of applications needs the data in each packet by a certain time and, if the data has not

arrived by then, the data is essentially worthless; we call these real-time applications. Another

class of applications will always wait for data to arrive; we call these elastic applications. We now

2

For those links where this is not a good approximation, such as some wireless links, we expect there to be

hop-by-hop error recovery so that at the network level there is a low error rate.



Expires: April 1994 6

network

sender receiver

Play-back

buffer

Figure 1: A schematic diagram of a playback application. The signal is generated and packetized

at the sender and then transmitted over the network. The receiver, in order to remove the e�ects

of network-induced delay jitter, bu�ers the packets until their playback points.

consider the delay requirements of these two classes separately. For the purposes of the discussion

that follows, we assume that all applications involve point-to-point communication, with all packets

requiring the same service. At the end of Section 3.3 we discuss the case of multipoint-to-multipoint

communication. In Section 5 we address the case where some packets in a ow are more important

than others.

3.2.1 Real-Time Applications

An important class of such real-time applications, which are the only real-time applications we

explicitly consider in the arguments that follow, are playback applications; Figure 1 illustrates such

an application. In a playback application, the source takes some signal, packetizes it, and then

transmits the packets over the network. The network inevitably introduces some variation in the

delay of the delivered packets. This variation in delay has traditionally been called \jitter". The

receiver depacketizes the data and then attempts to faithfully play back the signal. This is done

by bu�ering the incoming data to remove the network induced jitter and then replaying the signal

at some �xed o�set delay from the original departure time; the term playback point refers to the

point in time which is o�set from the original departure time by this �xed delay. Any data that

arrives before its associated playback point can be used to reconstruct the signal; data arriving after

the playback point is essentially useless in reconstructing the real-time signal

3

. For the purposes

of discussion, let us temporarily assume that such playback applications have some intrinsic data

generation process that is unalterable; later in this section we will return to this point.

In order to choose a reasonable value for the o�set delay, an application needs some a priori

characterization of the maximum delay its packets will experience. This a priori characterization

could either be provided by the network in a quantitative service commitment to a delay bound, or

through the observation of the delays experienced by the previously arrived packets; the application

needs to know what delays to expect, but this expectation need not be constant for the entire

duration of the ow.

The performance of a playback application is measured along two dimensions: latency and �delity.

In general, latency is the delay between the two (or more) ends of a distributed application; for

3

It is an oversimpli�cation to say that the data is useless; we discuss below that a receiving application could

adjust the playback point as an alternative to discarding late packets.



Expires: April 1994 7

playback applications, latency is the delay between the time the signal is generated at the source

and the time the signal is played back at the receiver, which is exactly the o�set delay. Applications

vary greatly in their sensitivity to latency. Some playback applications, in particular those that

involve interaction between the two ends of a connection such as a phone call, are rather sensitive to

the value of the o�set delay; other playback applications, such as transmitting a movie or lecture,

are not.

Fidelity is the measure of how faithful the playback signal is to the original signal. The playback

signal is incomplete when packets arrive after their playback point and thus are dropped rather

than played back. The playback signal becomes distorted when the o�set delay is varied. Therefore,

�delity is decreased whenever the o�set delay is varied and whenever packets miss their playback

point. Applications exhibit a wide range of sensitivity to loss of �delity. We will consider two

somewhat arti�cially dichotomous classes: intolerant applications, which require an absolutely

faithful playback, and tolerant applications, which can tolerate some loss of �delity

4

. Intolerance

to loss of �delity might arise because of user requirements (e.g., distributed symphony rehearsal),

or because the application hardware or software is unable to cope with missing pieces of data. On

the other hand, users of tolerant applications, as well as the application hardware and software,

are prepared to accept occasional distortions in the signal. We expect that the vast bulk of audio

and video applications will be tolerant.

Delay can a�ect the performance of playback applications in two ways. First, the value of the o�set

delay, which is determined by predictions about the future packet delays, determines the latency of

the application. Second, the delays of individual packets can decrease the �delity of the playback

by exceeding the o�set delay; the application then can either change the o�set delay in order to

play back late packets (which introduces distortion) or merely discard late packets (which creates

an incomplete signal). The two di�erent ways of coping with late packets o�er a choice between

an incomplete signal and a distorted one, and the optimal choice will depend on the details of the

application, but the important point is that late packets necessarily decrease �delity.

Intolerant applications must use a �xed o�set delay, since any variation in the o�set delay will

introduce some distortion in the playback. For a given distribution of packet delays, this �xed

o�set delay must be larger than the absolute maximum delay, to avoid the possibility of late

packets. In contrast, tolerant applications need not set their o�set delay greater than the absolute

maximum delay, since they can tolerate some late packets. Moreover, tolerant applications can

vary the o�set delay to some extent, as long as it doesn't create too much distortion.

Thus, tolerant applications have a much greater degree of exibility in how they set and adjust

their o�set delay. In particular, instead of using a single �xed value for the o�set delay, they can

attempt to reduce their latency by varying their o�set delays in response to the actual packet

delays experienced in the recent past. We call applications which vary their o�set delays in this

manner adaptive playback applications (a more precise term is delay-adaptive playback applications,

to distinguish it from the rate-adaptive playback applications we discuss below). This adaptation

amounts to gambling that the past packet delays are good predictors of future packet delays; when

the application loses the gamble there is a momentary loss of data as packets miss their playback

4

Obviously, applications lie on a continuum in their sensitivity to �delity. Here we are merely considering two

cases as a pedagogical device to motivate our service model, which indeed applies to the full spectrum of applications.



Expires: April 1994 8

points, but since the application is tolerant of such losses the decreased o�set delay may be worth

it. Besides the issue of inducing late packets, there is a complicated tradeo� between the advantage

of decreased o�set delay and the disadvantage of reduced �delity due to variations in the o�set.

Thus, how aggressively an application adapts, or even if it adapts at all, depends on the relative

ergonomic impact of �delity and latency. Our main observation here, though, is that by adapting

to the delays of incoming packets, tolerant playback applications can often pro�t by reducing their

o�set delay when the typical delays are well below the absolute maximum; this advantage, of course,

is accompanied by the risk of occasional late packets.

So far we have assumed that an application's data generation process is unalterable. However,

there are likely to be many audio and video applications which can adjust their coding scheme

and thus can alter the resulting data generation process. This alteration of the coding scheme will

present a tradeo� between �delity (of the coding scheme itself, not of the playback process) and the

bandwidth requirements of the ow. Such rate-adaptive playback applications have the advantage

that they can adjust to the current network conditions not just by resetting their playback point

but also by adjusting the tra�c pattern itself.

We now state several of our assumptions about the nature of future real-time applications. First, we

believe that most audio and video applications will be playback applications, and we therefore think

that playback applications will be the dominant category of real-time tra�c. By designing a service

model that is appropriate for these playback applications, we think we will have satisfactorily (but

perhaps not optimally) met the needs of all real-time applications. Second, we believe that the

vast majority of playback applications will be tolerant and that many, if not most, of these tolerant

playback applications will be adaptive. The idea of adaptive applications is not relevant to circuit

switched networks, which do not have jitter due to queueing. Thus, most real-time devices today,

like voice and video codecs, are not adaptive. Lack of widespread experience may raise the concern

that adaptive applications will be di�cult to build. However, early experiments suggest that it is

actually rather easy. Video can be made to adapt by dropping or replaying a frame as necessary,

and voice can adapt imperceptibly by adjusting silent periods. In fact, such adaptive approaches

have been employed in packetized voice applications since the early 70's (see [8, 36]); the VT [1],

NEVOT [31], and VAT [24] packet voice protocols, which are currently used to transmit voice on

the Internet, are living examples of such adaptive applications.

Third, we believe that most playback applications will have su�cient bu�ering to store packets until

their playback point. We base our belief on the fact that the storage needed is a function of the

queueing delays, not the total end-to-end delay. There is no reason to expect that queueing delays

for playback applications will increase as networks get faster (in fact, for an M/M/1 queueing system

with a �xed utilization, queueing delays are inversely proportional to the speed), and it is certainly

true that memory is getting cheaper, so providing su�cient bu�ering will become increasingly

practical. Fourth, and last, we assume that applications have su�cient knowledge about time to

set the playback point. The notion of a playback application implies that such applications have

some knowledge about the original generation time of the data. This knowledge could either be

explicitly contained in timestamps, or an approximation could be implicitly obtained by knowing

the inter-packet generation intervals of the source.



Expires: April 1994 9

3.2.2 Elastic Applications

While real-time applications do not wait for late data to arrive, elastic applications will always

wait for data to arrive. It is not that these applications are insensitive to delay; to the contrary,

signi�cantly increasing the delay of a packet will often harm the application's performance. Rather,

the key point is that the application typically uses the arriving data immediately, rather than

bu�ering it for some later time, and will always choose to wait for the incoming data rather

than proceed without it. Because arriving data can be used immediately, these applications do not

require any a priori characterization of the service in order for the application to function. Generally

speaking, it is likely that for a given distribution of packet delays, the perceived performance

of elastic applications will tend to depend more on the average delay than on the tail of the

distribution. One can think of several categories of such elastic applications: interactive burst

(Telnet, X, NFS), interactive bulk transfer (FTP), and asynchronous bulk transfer (electronic

mail, FAX). The delay requirements of these elastic applications vary from rather demanding for

interactive burst applications to rather lax for asynchronous bulk transfer, with interactive bulk

transfer being intermediate between them.

Some elastic applications, like Telnet, have an intrinsic data generation process which is largely

independent of network conditions. However, there are many elastic applications, in particular

those involving bulk transfer, which can alter their packet transmission process.

3.3 Delay Service Models

We now turn to describing service models that are appropriate for the various classes of applications

that were discussed in the previous paragraphs. Since we are assuming that playback applications

comprise the bulk of the real-time tra�c, we must design service models for intolerant playback

applications, tolerant playback applications (which can be either adaptive or non-adaptive), rate-

adaptive playback applications (which can be either tolerant or intolerant), and elastic applications.

The o�set delay of intolerant playback applications must be no smaller than the maximum packet

delay to achieve the desired faithful playback. Furthermore, this o�set delay must be set before any

packet delays can be observed. Such an application can only set its o�set delay appropriately if it

is given a perfectly reliable

5

upper bound on the maximum delay of each packet. We call a service

characterized by a perfectly reliable upper bound on delay guaranteed service, and propose this as

the appropriate service model for intolerant playback applications. Note that the delay bound not

only allows the application to set its o�set delay appropriately, but it also provides the information

necessary to predict the resulting latency of the application.

Since such an intolerant playback application will queue all packets until their respective playback

points, application performance is completely independent of when the packets arrive, as long as

they arrive within the delay bound. The fact that we assume that there is su�cient bu�ering means

that we need not provide a nontrivial lower bound to delay; only the trivial no-queueing minimum

5

By perfectly reliable, we mean that the bound is based on worst case assumptions about the behavior of all other

ows. The validity of the bound is predicated on the proper functioning of all network hardware and software along

the path of the ow.



Expires: April 1994 10

delay will be given as part of the service speci�cation.

A tolerant playback application which is not adaptive will also need some form of a delay bound

so that it can set its o�set delay appropriately. Since the application is tolerant of occasional late

packets, this bound need not be perfectly reliable. For this class of applications we propose a

service model called predictive service which supplies a fairly reliable, but not perfectly reliable,

delay bound. For this service, the network advertises a bound which it has reason to believe with

great con�dence will be valid, but cannot formally \prove" its validity

6

. If the network turns out

to be wrong and the bound is violated, the application's performance will perhaps su�er, but the

users are willing to tolerate such interruptions in service in return for the presumed lower cost of

the service and lower realized delays

7

.

It is important to emphasize that this is not a statistical bound, in that no statistical failure rate

is provided to the application in the service description. We do not think it feasible to provide a

statistical characterization of the delay distribution because that would require a detailed statistical

characterization of the load. We do envision the network ensuring the reliability of these predictive

bounds, but only over very long time scales; for instance, the network could promise that no

more than a certain fraction of packets would violate the predictive bounds over the course of a

month

8

. Such a statement is not a prediction of performance but rather a commitment to adjust

its bound-setting algorithm to be su�ciently conservative.

All nonadaptive applications, whether tolerant or not, need an a priori delay bound in order to

set their o�set delay; the degree of tolerance only determines how reliable this bound must be. In

addition to being necessary to set the o�set delay, these delay bounds provide useful estimates of

the resulting latency. Nonadaptive tolerant applications, like the intolerant applications considered

above, are indi�erent to when their packets arrive, as long as they arrive before the delay bound.

Recall, however, that we are assuming that many, if not most, tolerant playback applications are

adaptive. Thus, we must design the service model with such adaptation in mind. Since these

applications will be adapting to the actual packet delays, a delay bound is not needed to set

the o�set delay. However, in order to choose the appropriate level of service, applications need

some way of estimating their performance with a given level of service. Ideally, such an estimate

would depend on the detailed packet delay distribution. We consider it impractical to provide

predictions or bounds on anything other than the extremal delay values. Thus, we propose o�ering

the same predictive service to tolerant adaptive applications, except that here the delay bound is

6

This bound, in contrast to the bound in the guaranteed service, is not based on worst case assumptions on the

behavior of other ows. Instead, this bound might be computed with properly conservative predictions about the

behavior of other ows.

7

For nonadaptive applications, the realized latency is lower with predictive service since the fairly reliable bounds

will be less conservative than the perfectly reliable bounds of guaranteed service. For adaptive applications, as we

discuss below, the minimax component of predictive service can, and we expect usually will, reduce the average

latency, i.e. the average value of the o�set delay, to be well below the advertised bound.

8

Such an assurance is not meaningful to an individual ow, whose service over a short time interval might be

signi�cantly worse than the nominal failure rate. We envision that such assurances would be directed at the regulatory

bodies which will supervise the administration of such networks. However, we should note that there may very well be

pricing schemes which refund money if the service delivered to an individual application doesn't meet some standard

(such as a given fraction of packets obey the delay bound); this is not a service commitment but rather a monetary

one.



Expires: April 1994 11

not primarily used to set the o�set delay (although it may be used as a hint) but rather is used to

predict the likely latency of the application.

The actual performance of adaptive applications will depend on the tail of the delay distribution.

We can augment the predictive service model to also give minimax service, which is to attempt to

minimize the ex post maximum delay. This service is not trying to minimize the delay of every

packet, but rather is trying to pull in the tail of the distribution. Here the fairly reliable predictive

delay bound is the quantitative part of the service commitment, while the minimax part of the

service commitment is a relative service commitment. We could o�er separate service models for

adaptive and nonadaptive tolerant playback applications, with both receiving the predictive service

as a quantitative service commitment and with only adaptive applications receiving the minimax

relative commitment. However, since the di�erence in the service models is rather minor, we choose

to only o�er the combination of predictive and minimax service.

It is clear that given a choice, with all other things being equal, an application would perform

no worse with absolutely reliable bounds than with fairly reliable bounds. Why, then, do we

o�er predictive service? The key consideration here is e�ciency

9

; when one relaxes the service

requirements from perfectly to fairly reliable bounds, this increases the level of network utilization

that can be sustained, and thus the price of the predictive service will presumably be lower than

that of guaranteed service. The predictive service class is motivated by the conjecture that the

performance penalty will be small for tolerant applications but the overall e�ciency gain will be

quite large.

As we discussed above, both of these service models have a quantitative component. In order to

o�er this service, the nature of the tra�c from the source must be characterized, and there must

be some admission control algorithm which insures that a requested ow can actually be accommo-

dated. This characterization will not be a detailed statistical characterization (we do not believe

applications will be able to provide those) but instead will be a worst-case characterization; the

ow will commit to not exceed some usage envelope or �lter (e.g., a token bucket or leaky bucket).

A fundamental point of our overall architecture is that tra�c characterization and admission con-

trol are necessary for these real-time delay bound services. For rate-adaptive applications, these

tra�c characterizations are not immutable. We can thus augment the service model by allowing

the network to notify (either implicitly through packet drops or explicity through control pack-

ets) rate-adaptive applications to change their tra�c characterization. We will discuss this more

thoroughly in Section 5.

The fourth category for which we must develop a service model is elastic applications. Elastic ap-

plications are rather di�erent than playback applications; while playback applications hold packets

until their playback time, elastic applications use the packet whenever it arrives. Thus, reducing

the delays of any packet tends to improve performance. Furthermore, since there is no o�set delay,

there is no need for an a priori characterization of the delays. An appropriate service model is to

provide as-soon-as-possible, or ASAP service, which is a relative, not quantitative, commitment

10

.

Elastic applications vary greatly in their sensitivity to delay (which, as we mentioned earlier, is

9

E�ciency can be thought of as the number of applications that can be simultaneously serviced with a given

amount of bandwidth; for a fuller de�nition, see [6, 33].

10

We choose not to use the term \best-e�ort" for the ASAP service since that connotes the FIFO service discipline.



Expires: April 1994 12

probably more a function of the average delay than of the maximum delay), and so the service

model for elastic tra�c should distinguish between the various levels of delay sensitivity. We there-

fore propose a multiclass ASAP service model to reect the relative delay sensitivities of di�erent

elastic applications. This service model allows interactive burst applications to have lower delays

than interactive bulk applications, which in turn would have lower delays than asynchronous bulk

applications. In contrast to the real-time service models, this service model does not provide any

quantitative service commitment, and thus applications cannot predict their likely performance

and are also not subject to admission control. However, we think that rough predictions about

performance, which are needed to select a service class, could be based on the ambient network

conditions and historical experience. If the network load is unusually high, the delays will degrade

and the users must be prepared to tolerate this, since there was no admission control to limit the

total usage.

However, there may be some cases where an application (or the user of the application) might

want to know more precisely the performance of the application in advance. For instance, a Telnet

user might want to ensure that the delays won't interfere with her typing. For these cases, the

application can request predictive service (since the �rmness of the guaranteed bound is probably

not required) provided it is willing to specify the maximum transmission rate desired. Note that

since the network will then require compliance with the advertised transmission rate, the application

cannot get a higher throughput rate than what it requested.

There are two issues regarding the elastic service model

11

that we do not address in this memo,

and propose that these issues be revisited once the rest of the core service model is de�ned. First,

there is the issue of relative treatment of ows. One could treat each elastic packet independently,

and allocate service based merely on time-of-arrival and the level of ASAP service requested. Al-

ternatively, one could also attempt to control the aggregate resources used by each individual ow,

such as is done in the Fair Queueing service model as described in [7]. We do not address the

relative treatment of various ows at this time, since it will not a�ect the basic service interface.

Second, there is the issue of feedback. As we noted before, some elastic applications can adjust

their transmission pattern. This adjustment can be in response to implicit signals, such a packet

drops or delay, or explicit signals such as congestion bits in the packet header or separate control

packets. Again, we do not address at this time the form or content of such feedback signals since

they do not a�ect the basic service interface.

At the beginning of this section, we made the initial assumption that delay was the only quality

of service about which the network needed to make commitments. We now revisit this issue and

ask if that is indeed the case. For the typical real-time or elastic application which cares about

the delays of individual packets, there seems to be no need to include any other quality of service.

However, we observed earlier that there are some applications, such as transfers of very long �les,

which are essentially indi�erent to the delays of individual packets and are only concerned with

overall delay of the transfer. For these indi�erent applications, bandwidth rather than delay is

a more natural characterization of the desired service, since bandwidth dictates the application

performance. If such an application has no intrinsic overall delay requirement, then the desired

service is to �nish the transfer as quickly as possible. The desired service is as-much-bandwidth-

11

We have used the convenient, but perhaps confusing convention, of referring to elastic service and real-time

service when in fact the terms real-time and elastic refer to a class of applications.



Expires: April 1994 13

Applications

Elastic Real-Time

Tolerant IntolerantInteractive
Burst

Interactive
Bulk

Asynchronous
Bulk

ASAP
Level 1

ASAP
Level 2

ASAP
Level 3

Predictive
Minimax Guaranteed

Figure 2: Our rough taxonomy of applications and their associated service models. We have

arbitrarily depicted three levels of ASAP service.

as-possible. By servicing packets as soon as possible, the ASAP service described above delivers

exactly this as-much-bandwidth-as-possible service. Thus, while we did not explicitly consider bulk

transfer applications, our proposed service model already provides the desired service for bulk

transfer applications with no intrinsic overall delay requirements.

However, if this bulk transfer application had some intrinsic overall delay requirement, i.e. it

required the transfer to be completed within a certain time, then the ASAP service is no longer

su�cient. Now, the appropriate service is to allow the application to request a speci�ed amount of

bandwidth; the application chooses this bandwidth amount so that the transfer will be completed

in time. An application can secure a given amount of bandwidth through either of the real-time

services. The per-packet delay bounds provided by these real-time services are superuous to bulk

transfer applications with overall delay requirements. While one could imagine a di�erent service

which provided a commitment on bandwidth but not per-packet delay, the di�erence between

requesting a large delay bound and no delay bound is rather insigni�cant, and thus we expect

that such indi�erent applications with delay requirements will be adequately served by predictive

service with very large delay bounds. This has the disadvantage that indi�erent applications with

delay requirements do not get as-much-bandwidth-as-possible, but are constrained to their reserved

amount.

Figure 2 depicts our taxonomy of applications and the associated service models. This taxonomy is

neither exact nor complete, but was only used to guide the development of the core service model.

The resulting core service model should be judged not on the validity of the underlying taxonomy

but rather on its ability to adequately meet the needs of the entire spectrum of applications. In

particular, not all real-time applications are playback applications; for example, one might imagine

a visualization application which merely displayed the image encoded in each packet whenever it

arrived. However, non-playback applications can still use either the guaranteed or predictive real-

time service model, although these services are not speci�cally tailored to their needs. Similarly,

playback applications cannot be neatly classi�ed as either tolerant or intolerant, but rather fall

along a continuum; o�ering both guaranteed and predictive service allows applications to make

their own tradeo� between cost, �delity, and latency. Despite these obvious de�ciencies in the



Expires: April 1994 14

taxonomy, we expect that it describes the service requirements of current and future applications

well enough so that our core service model can adequately meet all application needs.

We have de�ned the core service model in terms of point-to-point ows. We can easily generalize

this service model to incorporate multipoint-to-multipoint ows. Clearly for elastic tra�c there is

no change to the service model. For the real-time service models, the delay bounds are speci�ed

for each point-to-point pair, and the tra�c characterizations apply to the sum of the ow's tra�c

at each hop along the ow's path.

4 Resource-Sharing Requirements and Service Models

The last section considered quality of service commitments; these commitments dictate how the

network must allocate its resources among the individual ows. This allocation of resources is

typically negotiated on a ow-by-ow basis as each ow requests admission to the network, and

does not address any of the policy issues that arise when one looks at collections of ows. To

address these collective policy issues, we now discuss resource-sharing service commitments. Recall

that for individual quality of service commitments we focused on delay as the only quantity of

interest. Here, we postulate that the quantity of primary interest in resource-sharing is aggregate

bandwidth on individual links. Our reasoning for this is as follows. Meeting individual application

service needs is the task of quality of service commitments; however, both the number of quanti-

tative service commitments that can be simultaneously made, and the quantitative performance

delivered by the relative service commitments, depend on the aggregate bandwidth. Thus, when

considering collective entities we claim that we need only control the aggregate bandwidth available

to the constituent applications; we can deal with all other performance issues through quality of

service commitments to individual ows. Embedded within this reasoning is the assumption that

bandwidth is the only scarce commodity; if bu�ering in the switches is scarce then we must deal

with bu�er-sharing explicitly, but we contend that switches should be built with enough bu�ering

so that bu�er contention is not the primary bottleneck.

Thus, this component of the service model, called link-sharing, addresses the question of how to

share the aggregate bandwidth of a link among various collective entities according to some set of

speci�ed shares. There are several examples that are commonly used to explain the requirement of

link-sharing among collective entities.

Multi-entity link-sharing. { A link may be purchased and used jointly by several organizations,

government agencies or the like. They may wish to insure that under overload the link is shared in

a controlled way, perhaps in proportion to the capital investment of each entity. At the same time,

they might wish that when the link is underloaded, any one of the entities could utilize all the idle

bandwidth.

Multi-protocol link-sharing { In a multi-protocol Internet, it may be desired to prevent one protocol

family (DECnet, IP, IPX, OSI, SNA, etc.) from overloading the link and excluding the other

families. This is important because di�erent families may have di�erent methods of detecting and

responding to congestion, and some methods may be more \aggressive" than others. This could

lead to a situation in which one protocol backs o� more rapidly than another under congestion,

and ends up getting no bandwidth. Explicit control in the router may be required to correct this.



Expires: April 1994 15

Again, one might expect that this control should apply only under overload, while permitting an

idle link to be used in any proportion.

Multi-service sharing { Within a protocol family such as IP, an administrator might wish to limit

the fraction of bandwidth allocated to various service classes. For example, an administrator might

wish to limit the amount of real-time tra�c to some fraction of the link, to avoid preempting elastic

tra�c such as FTP.

In general terms, the link-sharing service model is to share the aggregate bandwidth according to

some speci�ed shares; however, one must be careful to state exactly what this means. The following

example will highlight some of the policy issues implicit in link-sharing. Consider three �rms, 1,

2, and 3, who respectively have shares 1/4, 1/4, and 1/2 of some link. Assume that for a certain

hour, �rm 1 sends no tra�c to the link while �rms 2 and 3 each send enough to use the entire

capacity of the link. Are �rms 2 and 3 restricted to only using their original shares of the link, or

can they use �rm 1's unused bandwidth? Assume for now that they are allowed to use �rm 1's

unused bandwidth. Then, how is �rm 1's share of the link split between �rms 2 and 3? If, in the

next twenty minutes, all three �rms each send enough tra�c to consume the entire link, is the link

allocated solely to �rm 1 in order to make up for the imbalance in aggregate bandwidth incurred

during the �rst hour, or is the link shared according to the original shares? Thus, there are three

policy questions to be resolved: can �rms use each other's unused bandwidth, how is this unused

bandwidth allocated to the remaining �rms, and over what time scale is the sharing of bandwidth

measured? Clearly the answer to the �rst question must be a�rmative, since much of the original

motivation for link-sharing is to take advantage of the economies of statistical aggregation. As

for the second question, one can imagine many rules for splitting up the excess bandwidth but

here we propose that the excess is assigned in proportion to the original shares so that in the

above example during the �rst hour the link would be split 1/3, 2/3 for �rms 2 and 3 respectively.

The answer to the third question is less clear. The preceding example indicates that if sharing is

measured over some time scale T then a �rm's tra�c can be halted for a time on the order of T

under certain conditions; since such cessation should be avoided, we propose doing the sharing on

an instantaneous basis (i.e., the limit of T going to zero). This would dictate that during this next

twenty minutes the bandwidth is split exactly according to the original shares: 1/4, 1/4, and 1/2.

This policy embodies a \use-it-or-lose-it" philosophy in that the �rms are not given credit at a later

date for currently unused bandwidth.

An idealized uid model of instantaneous link-sharing with proportional sharing of excess is the

uid processor sharing model (introduced in [7] and further explored in [28, 29]) where at every

instant the available bandwidth is shared between the active entities (i.e., those having packets in

the queue) in proportion to the assigned shares of the resource. More speci�cally, we let � be the

speed of the link and we give each entity i its own virtual queue which stores its packets as they

await service. For each entity i we de�ne the following quantities: s

i

, the share of the link; c

i

(t),

the cumulative number of bits in the tra�c stream that have arrived by time t; and the backlog

b

i

(t), the number of bits remaining in the virtual queue at time t. Whenever a real packet arrives

at the switch belonging to entity i, we place a corresponding idealized packet at the tail of that

entity's virtual queue. The service within each such virtual queue is FIFO. We now describe how

service is allocated among the di�erent virtual queues. The idealized service model is de�ned by



Expires: April 1994 16

the equations:

b

0

i

(t) = c

0

i

�min[s

i

�; c

0

i

] if b

i

(t) = 0 (1)

and

b

0

i

(t) = c

0

i

(t)� s

i

� if b

i

(t) > 0 (2)

where b

0

i

(t) and c

0

i

(t) denote the time derivatives of b

i

(t) and c

i

(t), and where � is the unique

constant that makes

P

i

b

0

i

= � �

P

i

c

0

i

(when no such value exists, we set � =1).

At every instant the excess bandwidth, that is the bandwidth left over from ows not using their

entire share of bandwidth, is split among the active entities (i.e., those with b

i

> 0) in proportion

to their shares; each active

12

entity receives an instantaneous bandwidth that is greater than or

equal to their share of the full transmission rate.

This uid model exhibits the desired policy behavior but is, of course, an unrealistic idealization.

We then propose that the actual service model should be to approximate, as closely as possible, the

bandwidth shares produced by this ideal uid model. It is not necessary to require that the speci�c

order of packet departures match those of the uid model since we presume that all detailed per-

packet delay requirements of individual ows are addressed through quality of service commitments

and, furthermore, the satisfaction with the link-sharing service delivered will probably not depend

very sensitively on small deviations from the scheduling implied by the uid link-sharing model.

The link-sharing service model provides quantitative service commitments on bandwidth shares

that the various entities receive.

Heretofore we have considered link-sharing across a set of entities with no internal structure to

the entities themselves. However, the various sorts of link-sharing requirements presented above

could conceivably be nested into a hierarchy of link-sharing requirements, an idea �rst proposed by

Jacobson and Floyd [23]. For instance, a link could be divided between a number of organizations,

each of which would divide the resulting allocation among a number of protocols, each of which

would be divided among a number of services. We propose extending the idealized link-sharing

service model presented above to the hierarchical case. The policy desires will be represented by a

tree with shares assigned to each node; the shares belonging to the children of each node must sum

to the share of the node, and the top node represents the full link and has a unit share. Furthermore,

each node has an arrival stream described by c

i

(t) and a backlog b

i

(t) with the quantities of the

children of each node summing to the quantity of the node. Then, at each node we invoke the uid

processor sharing model among the children, with the instantaneous link speed at the i'th node,

�

i

(t), set equal to the rate b

0

i

(t) at which bits are draining out of that node's virtual queue. We can

start this model at the top node; when propagated down to the leaf nodes, or bottom-level entities,

this determines the idealized service model.

The introduction of a hierarchy raises further policy questions which are illustrated by the following

example depicted in Figure 3. Consider two �rms, 1 and 2, each with two protocols, `a' and `b'.

Let us assume that each of the bottom-level entities, 1a, 1b, 2a and 2b, has a 1/4 share of the link.

When all of the bottom-level entities are sending enough to consume their share, the bandwidth

is split exactly according to these shares. Now assume that at some instant there is no o�ered 2b

tra�c. Should each of 1a,1b and 2a get 1/3 of the link, or should 1a and 1b continue to get 1/4,

12

There are three states a ow can be in: active (b

i

> 0), inactive (b

i

= 0 and c

0

i

= 0), and in-limbo (b

i

= 0 but

c

0

i

> 0).



Expires: April 1994 17

Link Link

1/4 1/4 1/4 1/4 1/4 1/41/4 1/4

Tree #1 Tree #2

1a 1b 2a 2b 1a
1b

2a 2b

Figure 3: Two possible sharing trees with equal shares at all leaf nodes. When one of the leaf nodes

is not active, the trees produce di�erent bandwidth shares for the remaining active nodes.

with 2a getting the remaining 1/2 share of the link which is the total of the shares belonging to

�rm 2? This is a policy question to be determined by the �rms, so the service model should allow

either. Figure 3 depicts two possible sharing trees. Tree #1 in the �gure produces the 1/4, 1/4,

1/2 sharing whereas tree #2 produces the 1/3, 1/3, 1/3 sharing. When the link-sharing service

commitment is negotiated, it will be speci�ed by a tree and an assignment of shares for the nodes.

In the hierarchical model, the bandwidth sharing between the children of a given node was in-

dependent of the structure of the grandchildren. One can think of far more general link-sharing

service models. Assume that in the example above that protocol `a' carries tra�c from applications

with tight delay requirements and protocol `b' carries tra�c from applications with loose delay re-

quirements. The two �rms might then want to implement a sharing policy that when 1a is not

fully using its share of the link, the excess is shared equally among 1b and 2a, but when 1b is not

fully using its share of the link we will give the excess exclusively to 1a. To implement this more

complicated policy, it is necessary to take the grandchildren structure into account. We think that

this sort of exibility is probably not needed, for the same reason that we restricted ourselves to

bandwidth as the only collective concern; quality of service issues should be addressed via quality of

service commitments and not through the link-sharing service model. For this same reason, we do

not make priority distinctions between the various nodes, but merely allocate shares of bandwidth.

Therefore, for our resource-sharing service model we restrict ourselves to the hierarchical service

model presented above.

In Section 3 we observed that admission control was necessary to ensure that the real-time service

commitments could be met. Similarly, admission control will again be necessary to ensure that the

link-sharing commitments can be met. For each bottom-level entity, admission control must keep

the cumulative guaranteed and predictive tra�c from exceeding the assigned link-share.

5 Denial of Service

To meet its quantitative service commitments, the network must employ some form of admission

control. Without the ability to deny ows admission to the network, one could not reliably provide

the various delay bound services o�ered by our service model. In fact, admission control is just



Expires: April 1994 18

one aspect of denial of service; there are several other ways in which service can be denied. Denial

of service, in all of its incarnations, plays a fundamental role in meeting quantitative service com-

mitments. In particular, denial of service can be used to augment the resource sharing portion of

the core service model by supporting utilization targets. Moreover, denial of service, through the

use of the preemptable and expendable service options discussed below, can enable the network to

meet its service commitments while still maintaining reasonably high levels of network utilization.

Denial of service, like service commitments, can occur at various levels of granularity. Speci�cally,

denial of service can apply to whole ows, or to individual packets within a ow. We discuss these

two cases separately.

5.1 Denial to Flows

Denial of service to a ow can occur either before or during the lifetime of that ow. Denying service

to a ow before it enters the network is typically referred to as admission control. As we envision it,

in order to receive either of the two real-time bounded delay services (guaranteed and predictive),

a ow will have to explicitly request that service from the network, and this request must be

accompanied by a worst-case characterization of the ow's tra�c stream. This characterization

gives the network the information necessary to determine if it can indeed commit to providing the

requested delay bounds. The request is denied if the network determines that it cannot reliably

provide the requested service. References [12, 17, 21, 25] discuss various approaches to admission

control.

In addition, a service model could o�er a preemptable ow service, presumably for a lower cost than

non-preemptable service. When the network was in danger of not meeting some of its quantitative

service commitments, or even if the network was merely having to deny admission to other ows,

then it could exercise the \preemptability option" on certain ows and immediately discontinue

service to those ows by discarding their packets (and, presumably, sending a control message

informing those ows of their termination). By terminating service to these preemptable ows, the

service to the ows that are continuing to receive service will improve, and other non-preemptable

ows can be admitted.

Recall that rate-adaptive ows are able to adjust their transmission rate. For these ows we can

o�er an adjustable ow service, again presumably for a lower cost than the regular non-preemptable,

non-adjustable service. When the network was in danger of not meeting some of its quantitative

service commitments, or even if the network was merely having to deny admission to other ows,

then it could exercise the \adjustability option" of these ows and request that they reduce their

transmission rate. Similarly, when the network had spare capacity, it could inform these ows that

they could increase their transmission rate.

Admission control can be used to augment the link-sharing service model described in the previous

section. Link-sharing uses packet scheduling to provide quantitative service commitments about

bandwidth shares. This service is designed to provide sharing between various entities which have

explicitly contracted with the network to manage that sharing. However, there are other collective

policy issues that do not involve institutional entities, but rather concern overall utilization lev-

els of the various service classes (guaranteed, predictive, ASAP). Because they are not explicitly



Expires: April 1994 19

negotiated, and so no service commitments are at stake, these utilization levels are not controlled

by packet scheduling but instead are controlled by the admission control algorithm. All real-time

ows are subject to scrutiny by the admission control process; only those ows that are accepted

can use the network. If the admission control algorithm used the criteria that a ow was accepted

if and only if it could be accepted without violating other quality of service commitments, then

the utilization levels of the various classes will depend crucially on the order in which the service

requests arrived to the network. One might desire, instead, to make explicit policy choices about

these various level of utilization. For instance, it is probably advisable to prevent starvation of

any particular class of tra�c; an explicit control would be needed to prevent starvation of elastic

tra�c since the ASAP service does not involve resource reservation. In addition, one might want

the admissions process to ensure that requests for large amounts of bandwidth were not always

squeezed out by numerous smaller requests.

To prevent such problems, we must introduce some guidelines, called utilization targets, into the

admission control algorithm so that the utilization levels are not just dependent on the details of

the load pattern but instead are guided towards some preferred usage pattern. This utilization

target service model involves only admission control; thus, it is not properly part of the core service

model. We mention utilization targets here because other aspects of the core service model rely

on these utilization targets, and also because it is so similar to the link-sharing model, in that it

represents policy objectives for aggregated classes of tra�c.

5.2 Denial To Packets

While denial of service is usually associated with admission control, it also can be performed

on a packet-by-packet granularity. Denial of service to individual packets could occur by means

of a preemptable packet service, whereby ows would have the option of marking some of their

packets as preemptable. When the network was in danger of not meeting some of its quantitative

service commitments, it could exercise a certain packet's \preemptability option" and discard the

packet (not merely delay it, since that would introduce out-of-order problems). By discarding these

preemptable packets, the delays of the not-preempted packets will be reduced.

The basic idea of allowing applications to mark certain packets to express their \drop preference"

and then having the network discard these packets if the network is congested has been circulating

in the Internet community for years, and has been simulated in Reference [32]. The usual problem in

such a scheme is de�ning what congestion means. In the Internet, with its simple service model, one

usually equates congestion with the presence of a sizable queue. However, this is a network-centric

de�nition that is not directly related to the quality of service desired by the various applications.

In contrast, in our setting, we can make a very precise de�nition of congestion that is directly

tied to the applications' service requirements: congestion is when some of the quantitative service

commitments are in danger of being violated. The goal of admission control is to ensure that this

situation arises extremely infrequently.

The basic idea of preemptability can usefully be extended in two directions. First, for the purposes

of invoking the preemptability options, one can stretch the de�nition of a quantitative service

commitment to include implicit commitments such as compliance with the historical record of

performance. That is, one could choose to drop packets to make sure that the network continued



Expires: April 1994 20

to provide service that was consistent with its past history, even if that past history was never

explicitly committed to. Furthermore, one could also extend the de�nition of a quantitative service

commitment to the utilization targets discussed above.

Second, one can de�ne a class of packets which are not subject to admission control. In the

scenario described above where preemptable packets are dropped only when quantitative service

commitments are in danger of being violated, the expectation is that preemptable packets will

almost always be delivered and thus they must included in the tra�c description used in admission

control. However, we can extend preemptability to the extreme case of expendable packets (the

term expendable is used to connote an extreme degree of preemptability), where the expectation

is that many of these expendable packets will not be delivered. One can then exclude expendable

packets from the tra�c description used in admission control; i.e., the packets are not considered

part of the ow from the perspective of admission control, since there is no commitment that they

will be delivered. Such expendable packets could be dropped not only when quantitative service

commitments are in danger of being violated, but also when implicit commitments and utilization

targets, as described above, are in danger of being violated.

The goal of these preemptable and expendable denial of service options (both at the packet and

ow level of granularity) is to identify and take advantage of those ows that are willing to su�er

some interruption of service (either through the loss of packets or the termination of the ow) in

exchange for a lower cost. The preemptable ows and packets provide the network with a margin

of error, or a cushion, for absorbing rare statistical uctuations in the load. This will allow the

network to operate at a higher level of utilization without endangering the service commitments

made to those ows who do not choose preemptable service. Similarly, expendable packets can be

seen as �ller for the network; they will be serviced only if they do not interfere with any service

commitment but there is no expectation that their being dropped is a rare event. This will increase

the level of utilization even further. We will not specify further how these denial of service, or

preemptability, options are de�ned, but clearly there can be several levels of preemptability, so

that an application's willingness to be disrupted can be measured on more than a binary scale.

6 Alternative Viewpoints

In this section, we discuss several other viewpoints on the problem of providing integrated services.

6.1 Scheduling Algorithms vs. Service Models

The motivating principle of this memo is that the service model is primary. However, one could

contend that because we do not yet know the service needs of future applications, the most im-

portant goal is to design exible and e�cient packet scheduling implementations. Obviously both

packet scheduling implementations and service models are tremendously important, but the debate

here is over which one should guide the design of the Internet. There are three points to be made.

First, the service model must be made explicit to application designers. Currently, there are a rather

limited number of network-intensive applications; the network can, to a large extent, determine



Expires: April 1994 21

the service requirements of a packet by inspecting the port number. However, as the variety

of network-intensive applications increases, and as the service requirements of these applications

begin to depend on the user's personal demands (e.g., high and low priority mail, high and low

quality video from the same codec, etc.), port numbers will no longer be su�cient to identify

service requirements. Rather than having the network implicitly deliver the appropriate service,

the applications will have to explicitly request the desired service. For this to happen, the service

model must be made explicit (so that application designers know about it), and it obviously must

remain relatively stable; the service model should not just be implicitly de�ned by the packet

scheduling implementation. Thus, regardless of whether the packet scheduling algorithm is exible

or not, the service model must be made explicit and remain relatively stable.

Second, there is a fundamental di�erence in the time-scale over which packet scheduling implemen-

tations and service models have impact. Once a router vendor with a substantial market presence

adopts a new packet scheduling implementation, it will likely remain �xed for several years. So,

in the short term, we need to ensure that such packet scheduling implementations embody enough

exibility to adapt if a new service model is adopted, or the current service model is extended,

during the product's lifetime. However, router technology, and the embedded packet scheduling

implementations, do evolve as new products are introduced, and so one cannot expect that packet

scheduling implementations will remain �xed for many years. On the other hand, the time scale of

service models is rather di�erent. It typically takes much longer for a new service model to become

adopted and utilized, because it must be embedded in user applications. However, once a service

model does become adopted it is much harder to change, for precisely the same reason. Thus, we

can say that while the set of packet scheduling implementations will likely freeze �rst, the service

model freezes harder. For this reason we choose to focus on the service model.

Third, the role of exibility must be clari�ed. The services o�ered to individual ows by a packet

scheduling algorithm must be part of a service model and, as we argued above, the service model

does not change rapidly (except in experimental networks, where perhaps using exible and e�-

cient packet scheduling implementations is important); in particular, we expect service models to

change much less rapidly than packet scheduling algorithms. Thus, for quality of service commit-

ments to individual ows, exibility is not of great importance. However, the link-sharing portion

of the service model is not exercised by individual applications but rather by network managers

through some network management interface. This portion of the service model can change much

more rapidly, so exibility is indeed important for link-sharing and other forms of resource sharing.

The debate over the relative importance of service models and packet scheduling implementations

reects, at least in part, a deeper disagreement over the extent to which quality of service needs are

met indirectly by link-sharing, which controls the aggregate bandwidth allocated to various collec-

tive entities, as opposed to being met directly by quality of service commitments to individual ows.

Actually, the important distinction here is not between link-sharing and delay related services, but

rather between those services which require explicit use of the service interface, and those that are

delivered implicitly (i.e., based on information automatically included in the packet header such as

port numbers). Network architectures designed around such implicit quality of service mechanisms

do not require a well-de�ned service model; the network architecture we have advocated involves

explicit quality of service mechanisms and therefore requires a stable service model.



Expires: April 1994 22

6.2 Why Use Admission Control?

Real-time service plays a central role in the proposed service model. We should note that there is

another viewpoint on this issue, which has not yet been adequately articulated in the literature.

It is conceivable that the combination of adaptive applications and su�cient overprovisioning of

the network could render such delay bounds, with the associated need for admission control, un-

necessary; applications could adapt to current network conditions, and the overprovisioning would

ensure that the network was very rarely overloaded

13

. In this view, it would be su�cient to provide

only the several classes of ASAP service without any real-time services. The �rst question is, can

one indeed overprovision the network so that it is extremely rarely overloaded? It is true that the

statistical demand in the phone network is well characterized, and overprovisioning has become

a �nely honed art. However, there are three crucial di�erences between the phone network and

the Internet which lead us to the conclusion that the extreme variability of the o�ered load will

require too great a degree of overprovisioning to make this approach practical. First, we do not

expect the usage patterns on the Internet to be nearly so well characterized. In the phone network

the usage patterns tend to revolve around human behavior, which changes rather slowly. However,

in the Internet, the transfer of a few �le repositories can create a dramatic and immediate shift

in tra�c patterns. Second, the variability in usage of an individual phone user is quite limited.

In contrast, computer network usage can easily vary by three orders of magnitude, from 64kbps

voice to 100mbps HDTV. Even if the law of large numbers does apply, the intrinsic variance of the

individual distributions means that the resulting variance of the aggregate usage will be several

orders of magnitude bigger than in the phone network. Third, regardless of price, there are natural

intrinsic limits to the maximum bandwidth demand on the phone network: every person and FAX

machine placing a call simultaneously. In contrast, there is no reason to expect that if bandwidth

were su�ciently cheap there would be limits to the bandwidth consumption on the Internet (think

of having video-on-demand everywhere). Thus, unless we use excessively high prices to arti�cially

lower demand, we doubt we can overprovision the network so that it is extremely rarely overloaded

14

. This issue then reduces to choosing either to lower demand through high prices or to occasion-

ally turn demand away when in an overload; we think it far preferable to encourage network use

by keeping prices low and then use admission control to ration when demand exceeds supply.

Given that overloads will occur if no admission control is used, the second question is: can applica-

tions adequately adapt to these overloaded conditions, or should we use admission control to prevent

these overloads from occurring? Even if one assumes that adaptation is done instantaneously (so

that there are no transient periods where the o�set delays are incorrectly set), there is the basic

question of whether the user population would be happier all sharing an overloaded network, or

would they prefer having some users turned away. For typical elastic applications such as Telnet,

it is most likely preferable to share the overloaded network. For typical real-time applications such

as remote interactive video, we conjecture that it is preferable to turn some users away because

the rapid increase in delays and packet drops as a function of load causes severe degradation of

application performance even for adaptive applications. In short, the ability to adapt to worse

conditions does not mean that applications are una�ected by these conditions. For this reason we

conclude that admission control is necessary.

13

Of course, this viewpoint is predicated on the nonexistence of applications which have hard real-time requirements.

14

Using prices in this way will likely cause the excess demand to bypass the Internet and turn to alternate providers.



Expires: April 1994 23

A common counterargument to our line of reasoning is that users will be unhappy with any network

that denies service with any signi�cant frequency, and so we are merely trading o� the unhappiness

with overloading for the unhappiness caused by denial of service. While users may expect very

low rates of denial for low-bandwidth applications like voice, there will not likely be the same

expectation for extremely bandwidth intensive applications like HDTV. We expect that it will be

rather easy, and fairly e�cient (i.e., result in a reasonably high utilization level), to provision the

network so that it can easily accept almost all phone calls, but will occasionally turn away much

larger bandwidth requests.

6.3 Variations on the Service Model

There are other approaches to de�ning real-time service. The real-time service advocated here

provides a bound on the maximum delay of packets, provided that the application's tra�c load

conforms to some prearranged �lter. One could provide not only a bound on the maximum delay

but also a nontrivial bound (i.e., a bound other than the no-queueing bound) on the minimum

delay. We did not include such nontrivial lower bounds on delay in our present service model

because they serve only to reduce bu�ering at the receiver and we do not expect bu�ers to be

a bottleneck; furthermore, if some applications do need additional bu�ering, this can easily be

supplied at the edge of the network and need not be built into the basic core service model.

A rather di�erent form of service model is to o�er statistical characterizations of performance. We

explicitly reject such statistically characterized service o�erings because they inherently require a

statistical characterization of individual ows (or at least of the aggregate tra�c), and we doubt

that such characterizations will be available. Instead, we rely only on worst-case characterizations

of the ows.

Finally, one can de�ne di�erent link-sharing service models; in particular, as discussed in [13], one

can incorporate priorities between entities into the link-sharing service model (the model presented

here does include priorities in a single entity's tra�c, but not between entities). We do not in-

clude this feature for two reasons. First, a basic principle of this service model is that the quality

of service requirements of individual applications should be addressed primarily through explicit

service requests. Second, and much more importantly, the priority features will not produce dra-

matically di�erent delay behaviors unless the tra�c is very close to the bandwidth limits imposed

by link-sharing.

7 Acknowledgments

We would like to acknowledge that the thoughts discussed in this memo reect the contributions of

many others. In particular, the works of Parekh and Gallager [28, 29], Ferrari et al. [10, 11, 12, 35],

Jacobson and Floyd [2, 23, 13], Golestani [14, 15], Guerin et al. [16, 17], Kurose et al. [4, 18, 27, 32,

37], Lazar et al. [19, 20, 21, 22], and Kalmanek et al. [26] have been critical in shaping our thinking

on this matter. Discussions with our ISIP collaborators, the End-to-End Services Research Group,

the authors of the above works, and many of our other colleagues have also been instrumental in

clarifying our thoughts. In particular, Abhay Parekh has taught us much about the delay bound



Expires: April 1994 24

results in [28, 29]. Also, Sally Floyd and Van Jacobson have rightly insisted that packet scheduling

algorithms must deal with packet dropping and hierarchical link-sharing; we wish to acknowledge

that much of our thinking on the hierarchical nature of link-sharing was stimulated by, and borrows

heavily from, their work.

References

[1] S. Casner. private communication, 1992.

[2] D. Clark and V. Jacobson. Flexible and E�cient Resource management for Datagram Net-

works, unpublished draft, 1991.

[3] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an Integrated Ser-

vices Packet Network: Architecture and Mechanism, in Proceedings of SIGCOMM '92, pp

14-26, 1992.

[4] R. Chipalkatti, J. Kurose, and D. Towsley. Scheduling Policies for Real-Time and Non-Real-

Time Tra�c in a Statistical Multiplexer, in Proceedings of GlobeCom '89, pp 774-783, 1989.

[5] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Study of Priority Pricing in Multiple Service

Class Networks, in Proceedings of SIGCOMM '91, pp 123-130, 1991.

[6] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. Pricing in Computer Networks: Motivation,

Formulation, and Example, preprint, 1992.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm,

In Journal of Internetworking: Research and Experience, 1, pp. 3-26, 1990. Also in Proc.

ACM SIGCOMM '89, pp 3-12.

[8] J. DeTreville and D. Sincoskie. A Distributed Experimental Communications System, In IEEE

JSAC, Vol. 1, No. 6, pp 1070-1075, December 1983.

[9] D. Ferrari. Client Requirements for Real-Time Communication Services, In IEEE Communi-

cations Magazine, 28(11), November 1990.

[10] D. Ferrari. Distributed Delay Jitter Control in Packet-Switching Internetworks, In Journal of

Internetworking: Research and Experience, 4, pp. 1-20, 1993.

[11] D. Ferrari, A. Banerjea, and H. Zhang Network Support for Multimedia, preprint, 1992.

[12] D. Ferrari and D. Verma. A Scheme for Real-Time Channel Establishment in Wide-Area Net-

works, In IEEE JSAC, Vol. 8, No. 3, pp 368-379, April 1990.

[13] S. Floyd. Link-sharing and Resource Management Models for Packet Networks, preprint, 1993.

[14] S. J. Golestani. A Stop and Go Queueing Framework for Congestion Management, In Pro-

ceedings of SIGCOMM '90, pp 8-18, 1990.

[15] S. J. Golestani. Duration-Limited Statistical Multiplexing of Delay Sensitive Tra�c in Packet

Networks, In Proceedings of INFOCOM '91, 1991.



Expires: April 1994 25

[16] R. Gu�erin and L. G�un. A Uni�ed Approach to Bandwidth Allocation and Access Control in

Fast Packet-Switched Networks, In Proceedings of INFOCOM '92.

[17] R. Gu�erin, H. Ahmadi, and M. Naghshineh. Equivalent Capacity and Its Application to Band-

width Allocation in High-Speed Networks, In IEEE JSAC, Vol. 9, No. 9, pp 968-981, September

1991.

[18] J. Kurose. Open Issues and Challenges in Providing Quality of Service Guarantees in High-

Speed Networks, In Computer Communication Review, 23(1), pp 6-15, 1993.

[19] J. Hyman and A. Lazar. MARS: The Magnet II Real-Time Scheduling Algorithm, In Proceed-

ings of SIGCOMM '91, pp 285-293, 1991.

[20] J. Hyman, A. Lazar, and G. Paci�ci. Real-Time Scheduling with Quality of Service Constraints,

In IEEE JSAC, Vol. 9, No. 9, pp 1052-1063, September 1991.

[21] J. Hyman, A. Lazar, and G. Paci�ci. Joint Scheduling and Admission Control for ATS-based

Switching Nodes, In Proceedings of SIGCOMM '92, 1992.

[22] J. Hyman, A. Lazar, and G. Paci�ci. A Separation Principle Between Scheduling and Admission

Control for Broadband Switching, In IEEE JSAC, Vol. 11, No. 4, pp 605-616, May 1993.

[23] V. Jacobson and S. Floyd private communication, 1991.

[24] V. Jacobson private communication, 1991.

[25] S. Jamin, S. Shenker, L. Zhang, and D. Clark. An Admission Control Algorithm for Predictive

Real-Time Service, In Proceedings of the Third International Workshop on Networking

and Operating System Support for Digital Audio and Video, 1992.

[26] C. Kalmanek, H. Kanakia, and S. Keshav. Rate Controlled Servers for Very High-Speed Net-

works, In Proceedings of GlobeCom '90, pp 300.3.1-300.3.9, 1990.

[27] R. Nagarajan and J. Kurose. On De�ning, Computing, and Guaranteeing Quality-of-Service

in High-Speed Networks, In Proceedings of INFOCOM '92, 1992.

[28] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow Control- The

Single Node Case, In Technical Report LIDS-TR-2040, Laboratory for Information and De-

cision Systems, Massachusetts Institute of Technology, 1991.

[29] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services

Networks, In Technical Report LIDS-TR-2089, Laboratory for Information and Decision

Systems, Massachusetts Institute of Technology, 1992.

[30] C. Partridge, A Proposed Flow Speci�cation RFC-1363, July 1992.

[31] H. Schulzrinne private communication, 1992.

[32] H. Schulzrinne, J. Kurose, and D. Towsley. Congestion Control for Real-Time Tra�c, In Pro-

ceedings of INFOCOM '90.

[33] S. Shenker Service Models and Pricing Policies for an Integrated Services Internet, to appear

in Proceedings of \Public Access to the Internet", Harvard University, 1993.



Expires: April 1994 26

[34] S. Shenker, D. Clark, and L. Zhang. A Scheduling Service Model and a Scheduling Architecture

for an Integrated Services Packet Network preprint, 1993.

[35] D. Verma, H. Zhang, and D. Ferrari. Delay Jitter Control for Real-Time Communication in a

Packet Switching Network, In Proceedings of TriCom '91, pp 35-43, 1991.

[36] C. Weinstein and J. Forgie. Experience with Speech Communication in Packet Networks, In

IEEE JSAC, Vol. 1, No. 6, pp 963-980, December 1983.

[37] D. Yates, J. Kurose, D. Towsley, and M. Hluchyj. On Per-Session End-to-End Delay Distri-

bution and the Call Admission Problem for Real Time Applications with QOS Requirements,

In Proceedings of SIGCOMM '93, to appear.

[38] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, RSVP: A New Resource ReSer-

Vation Protocol, Accepted for publication in IEEE Network, 1993.



Expires: April 1994 27

A On Standardizing a Service Model

Let us assume, for the sake of argument, that the Internet community agrees to adopt a service

model similar in spirit to the one proposed here. There is then the question of how one standardizes

the service model. There are two approaches. First, one could identify a single packet forwarding

algorithm which supports this service model and then require that all routers use this algorithm.

This entails standardizing the detailed packet scheduling mechanisms in the routers. It is not clear

that all router technologies will be able to implement this particular packet scheduling mechanism,

and so this approach may limit the range of technologies that can be employed in the Internet.

One expects, in fact for the sake of progress one hopes, that the future Internet will have a diverse

set of underlying technologies, and so requiring uniformity of the packet forwarding algorithm is

probably not realistic nor desirable. The second approach involves adopting the service model

without specifying the underlying mechanism. This path, while not nearly as straightforward (in

fact, it poses a special challenge to the Internet's standardization procedures), is far more exible.

In this second approach there are several di�erent conceptual issues which must be dealt with: (1)

what services will be o�ered, (2) how are those services requested by the application, and (3) how

are those services provided by the network. In this section we briey address these three issues.

A.1 De�ning the Services

There are two separate components to de�ning the set of services o�ered by the network: the

service model and the service speci�cation.

Service Model This is the basic set of services o�ered by the network and, as such, is the central

expression of the network architecture. As we have argued previously, the service model

should be based on fundamental application requirements. We have proposed a core service

model in this memo. For individual ows it provides for two kinds of real-time service,

guaranteed service and predictive service, along with multiple levels of elastic service. The

service model also provides for hierarchical link-sharing services between collective entities.

Service Speci�cation This is the detailed parameterization of the service model. This speci�-

cation details how the service delivered to ows is characterized (e.g., delay bounds, etc.).

In addition, the service speci�cation details both how ows characterize themselves to the

network (e.g., token bucket, leaky bucket, peak rate, etc.), and how these characterizations

are enforced the network (e.g., by dropping or delaying packets, at entry points or at every

router, etc.). While the service model is derived from rather general principles, the ser-

vice speci�cation involves making a number of detailed (and perhaps arbitrary) engineering

choices.

A.2 Obtaining the Services

There are three kinds of services: link-sharing, elastic, and real-time. The link-sharing services will

presumably be controlled through a network management interface. Since this network management

interface will not typically be invoked by widely-used applications, there are few compatibility



Expires: April 1994 28

constraints. Thus, this interface can gradually evolve and so we need not be concerned with making

its de�nition precise now. Since providing elastic service requires no preallocation of resources, we

presume that applications utilizing elastic service will not need to pass through admission control.

These elastic service desires (i.e., which level of ASAP service, and the preemptability of the packets)

will probably be speci�ed by the application in the interface to the transport protocol, and this will

in turn be communicated to the network through some indication in the individual packet headers.

We assume that this will be addressed in some other standardization venue, and we will not address

it further here.

In contrast, providing the real-time services does require preallocation of network resources. Appli-

cations desiring real-time service will have to �rst explicitly request that service, and this request

involves reserving network resources. The reservation procedure has two steps; �rst the application

will invoke some operating system interface to request the reservation, and then some set-up or

reservation protocol will forward that request to the network and return an answer. The appli-

cation logically sees a request-response semantics through some operating system interface; the

routers interact not with the application but with the reservation protocol and that can have a

di�erent interface. The set-up protocol has its own \service model" of the various con�gurations

of reserved state it can provide; these were deemed reservation styles in [38] (we are not advocat-

ing the particular reservation styles in [38] but are merely citing them as examples of nontrivial

relationships between ows and reserved resources). As an example of this we note that so far

in our exploration of the service model, we have discussed only the service given to actual ows

(that is, ows whose packets are forwarded by the network). However, one can reserve resources for

potential ows as well; potential ows are those whose packets are not currently being forwarded,

but for whom resources have been reserved.

Thus, in de�ning how applications obtain real-time services, we must deal with the reservation

model of the set-up protocol and not just the service model of the network itself. We also must

describe what information is passed between the applications and the network, and then must

provide a detailed description of the interface invoked by applications. More speci�cally, the three

conceptual pieces are:

Reservation Model The reservation model describes what con�gurations of resources can be re-

served. The reservation model must not only address the service model available to individual

ows, but must also incorporate more general con�gurations of reserved resources.

Negotiation Model The negotiation model describes, at an architectural level, (1) what param-

eters the application hands to the operating system interface, and (2) what parameters the

application gets back from that interface. The negotiation model will depend on, and may

therefore dictate, which end (source, receiver) of the application is submitting the requests.

The negotiation model will also have implications for the set of queries and responses imple-

mented in the admission control algorithm.

Reservation Interface This is a detailed parameterization (essentially the API) of the negoti-

ation model. This reservation interface will be the artifact that is invoked by applications.

It should be designed to be properly extensible, so that new services can be added, but it

will inevitably be subject to compatibility constraints and therefore the previously de�ned

components will be largely immutable.



Expires: April 1994 29

A.3 Providing the Services

The previous two sections specify the range of services available, and how an application can obtain

them. If there were a single network provider, then we would just require that the network support

the interface to the set-up protocol and deliver the desired service. However, the Internet is, and

will likely continue to be, a very heterogeneous and administratively decentralized institution. The

service delivered to a ow is a concatenation of the service provided by the various routers along

its path, and these routers need not implement the same packet forwarding algorithms. Thus, we

need to directly address how we can be assured that such a network, with local operators making

decisions about which routers to install, will indeed support the service model. As mentioned

previously, one approach is to insist on a single router mechanism. The approach we advocate

is, instead, to provide a functional requirement on routers rather than a de�nition of the detailed

mechanism.

Router Interoperability Requirements This speci�es a set of criteria that a router has to

conform to. There are two categories of criteria. First, the routers must implement the

interface used by the set-up protocol, and the admission control algorithm must support the

appropriate set of queries. Incorporated within this is something functionally equivalent to

what is described in RFC 1363 [30], which describes the set of parameters handed to routers

along the path of a ow. Second, the service delivered by the router must conform to certain

standards; these standards are designed so that the service delivered by a heterogeneous set

of conforming routers will obey the service model. For guaranteed service, one might require

that routers must approximate the WFQ uid model, as de�ned in [7]. One can express the

accuracy to which a router supports the uid model with an error term which can be carried

in the reservation interface as it is passed between routers and added up to compute the

resulting end-to-end delay bounds. We should note that this is just one example; there are

other alternatives for specifying how to deliver guaranteed service. For predictive service, the

issue is much more di�cult. Here the performance depends crucially on the admission control

algorithm

15

, and it is di�cult to accurately characterize a measurement-based admission

control algorithm. We propose that the performance of such algorithms be characterized by

their performance on various test suites. These test suites will reveal not only the degree to

which the delay bounds are met, but also the level of network utilization obtained (which

depends on the behavior of the admission control algorithm). How one de�nes and evaluates

such test suites is an unexplored yet crucial issue.

15

The guaranteed service depends on admission control as well, but for guaranteed service there is a clear correctness

condition for admission control. There is no such clear correctness condition for predictive admission control.


